2,722 research outputs found

    Physical limitations on quantum nonlocality in the detection of gamma photons emitted from positron/electron annihilation

    Full text link
    Recent experimental measurements of the time interval between detection of the two photons emitted in positron/electron annihilation have indicated that collapse of the spatial part of the photon's wavefunction, due to detection of the other photon, does not occur. Although quantum nonlocality actually occurs in photons produced through parametric down-conversion, the recent experiments give strong evidence against measurement-induced instantaneous spatial-localization of high-energy gamma photons. A new quantum-mechanical analysis of the EPR problem is presented which may help to explain the observed differences between photons produced through parametric down-conversion and photons produced through positron/electron annihilation. The results are found to concur with the recent experiments involving gamma photons.Comment: accepted for publication, Phys. Rev.

    Was atmospheric CO2 capped at 1000ppm over the past 300 million years?

    Get PDF
    AbstractAtmospheric carbon dioxide concentration has shifted dynamically over the Phanerozoic according to mass balance models and the majority of proxy estimates. A new paleo-CO2 proxy method underpinned by mechanistic understanding of plant stomatal, isotopic and photosynthetic responses to CO2 has provocatively claimed that maximum paleoatmospheric CO2 was capped at 1000ppm for the majority of the past 300 million years. Here we evaluate the robustness of the new paleo-proxy CO2 model by testing its sensitivity to initial parameterization and to scaling factors employed to estimate paleophysiological function from anatomical and morphological traits. A series of sensitivity analyses find that the model is robust to modification in some of the constants employed, such as CO2 compensation point and mesophyll conductance, resulting in variability in paleo-CO2 estimates which are already accounted for in the error propagation of the model. We demonstrate high sensitivity in the model to key input parameters such as initial fossil plant assimilation rate, termed A0 and scaling factors used to estimate stomatal conductance from measurements of fossil stomata. Incorrect parameterization of A0 has resulted in under estimation of pCO2 by as much as 600ppm. Despite these uncertainties, our analysis highlights that the new mechanistic paleo-CO2 proxy of Franks et al. (2014) has significant potential to derive robust and more accurate CO2 estimates from fossil plant stomata, as long as parameterization of A0 is strongly justified with species appropriate morphological and anatomical data. We highlight methods that can be used to improve current estimates of fossil plant assimilation rates, reduce uncertainty associated with implementation of the Franks et al. (2014) model and importantly add to understanding of patterns of plant productivity over the Phanerozoic, for which there currently is no consensus

    Phase separation in t-J ladders

    Full text link
    The phase separation boundary of isotropic t-J ladders is analyzed using density matrix renormalization group techniques. The complete boundary to phase separation as a function of J/t and doping is determined for a chain and for ladders with two, three and four legs. Six-chain ladders have been analyzed at low hole doping. We use a direct approach in which the phase separation boundary is determined by measuring the hole density in the part of the system which contains both electrons and holes. In addition we examine the binding energy of multi-hole clusters. An extrapolation in the number of legs suggests that the lowest J/t for phase separation to occur in the two dimensional t-J model is J/t~1.Comment: 8 pages in revtex format including 13 embedded figures, one reference adde

    The Colors of Mixtures of Dental Opaque Porcelains

    Full text link
    The colors of mixtures of dental opaque porcelains and modifiers were measured with use of the CIE L*a * b* uniform color space. Mixtures of dental porcelains were tested to duplicate the range of human tooth colors. Vertical movements in the yellow and blue directions were obtained. Horizontal movements in the red and green directions were achieved. Reflectance measurements were made with use of a spectrophotometer with an integrating sphere. Spectrophotometer measurements were converted to absolute reflectance and then used to calculate CIE a* b* values for a 2° standard observer and for illuminant C. Movements in the yellow, red, blue, and green directions for adequate simulation of the tooth color range can be demonstrated with use of dental opaque and modifier porcelains.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67312/2/10.1177_00220345890680090601.pd

    Phase separation and stripe formation in the 2D t-J model: a comparison of numerical results

    Full text link
    We make a critical analysis of numerical results for and against phase separation and stripe formation in the t-J model. We argue that the frustrated phase separation mechanism for stripe formation requires phase separation at too high a doping for it to be consistent with existing numerical studies of the t-J model. We compare variational energies for various methods, and conclude that the most accurate calculations for large systems appear to be from the density matrix renormalization group. These calculations imply that the ground state of the doped t-J model is striped, not phase separated.Comment: This version includes a revised, more careful comparison of numerical results between DMRG and Green's function Monte Carlo. In particular, for the original posted version we were accidentally sent obsolete data by Hellberg and Manousakis; their new results, which are what were used in their Physical Review Letter, are more accurate because a better trial wavefunction was use

    Effects of domain walls on hole motion in the two-dimensional t-J model at finite temperature

    Full text link
    The t-J model on the square lattice, close to the t-J_z limit, is studied by quantum Monte Carlo techniques at finite temperature and in the underdoped regime. A variant of the Hoshen-Koppelman algorithm was implemented to identify the antiferromagnetic domains on each Trotter slice. The results show that the model presents at high enough temperature finite antiferromagnetic (AF) domains which collapse at lower temperatures into a single ordered AF state. While there are domains, holes would tend to preferentially move along the domain walls. In this case, there are indications of hole pairing starting at a relatively high temperature. At lower temperatures, when the whole system becomes essentially fully AF ordered, at least in finite clusters, holes would likely tend to move within phase separated regions. The crossover between both states moves down in temperature as doping increases and/or as the off-diagonal exchange increases. The possibility of hole motion along AF domain walls at zero temperature in the fully isotropic t-J is discussed.Comment: final version, to appear in Physical Review

    Spatially homogeneous ground state of the two-dimensional Hubbard model

    Full text link
    We investigate the stability with respect to phase separation or charge density-wave formation of the two-dimensional Hubbard model for various values of the local Coulomb repulsion and electron densities using Green-function Monte Carlo techniques. The well known sign problem is particularly serious in the relevant region of small hole doping. We show that the difference in accuracy for different doping makes it very difficult to probe the phase separation instability using only energy calculations, even in the weak-coupling limit (U=4tU=4t) where reliable results are available. By contrast, the knowledge of the charge correlation functions allows us to provide clear evidence of a spatially homogeneous ground state up to U=10tU=10t.Comment: 7 pages and 5 figures. Phys. Rev. B, to appear 200

    Staggered flux and stripes in doped antiferromagnets

    Full text link
    We have numerically investigated whether or not a mean-field theory of spin textures generate fictitious flux in the doped two dimensional tJt-J-model. First we consider the properties of uniform systems and then we extend the investigation to include models of striped phases where a fictitious flux is generated in the domain wall providing a possible source for lowering the kinetic energy of the holes. We have compared the energetics of uniform systems with stripes directed along the (10)- and (11)-directions of the lattice, finding that phase-separation generically turns out to be energetically favorable. In addition to the numerical calculations, we present topological arguments relating flux and staggered flux to geometric properties of the spin texture. The calculation is based on a projection of the electron operators of the tJt-J model into a spin texture with spinless fermions.Comment: RevTex, 19 pages including 20 figure

    Spin-fluctuations in the quarter-filled Hubbard ring : significances to LiV2_2O4_4

    Full text link
    Using the quantum Monte Carlo method, we investigate the spin dynamics of itinerant electrons in the one-dimensional Hubbard system. Based on the model calculation, we have studied the spin-fluctuations in the quarter-filled metallic Hubbard ring, which is aimed at the vanadium ring or chain defined along corner-sharing tetrahedra of LiV2_2O4_4, and found the dramatic changes of magnetic responses and spin-fluctuation characteristics with the temperature. Such results can explain the central findings in the recent neutron scattering experiment for LiV2_2O4_4.Comment: 5 pages, 3 figure

    Superconductors with Magnetic Impurities: Instantons and Sub-gap States

    Full text link
    When subject to a weak magnetic impurity potential, the order parameter and quasi-particle energy gap of a bulk singlet superconductor are suppressed. According to the conventional mean-field theory of Abrikosov and Gor'kov, the integrity of the energy gap is maintained up to a critical concentration of magnetic impurities. In this paper, a field theoretic approach is developed to critically analyze the validity of the mean field theory. Using the supersymmetry technique we find a spatially homogeneous saddle-point that reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions to the density of states that render the quasi-particle energy gap soft at any non-zero magnetic impurity concentration. The sub-gap states are associated with supersymmetry broken field configurations of the action. An analysis of fluctuations around these configurations shows how the underlying supersymmetry of the action is restored by zero modes. An estimate of the density of states is given for all dimensionalities. To illustrate the universality of the present scheme we apply the same method to study `gap fluctuations' in a normal quantum dot coupled to a superconducting terminal. Using the same instanton approach, we recover the universal result recently proposed by Vavilov et al. Finally, we emphasize the universality of the present scheme for the description of gap fluctuations in d-dimensional superconducting/normal structures.Comment: 18 pages, 9 eps figure
    corecore